fbpx
Skip to main content

About MIDI-Part 1:Overview


MIDI (pronounced “mid-e”) is a technology that makes creating, playing, or just learning about music easier and more rewarding. Playing a musical instrument can provide a lifetime of enjoyment and friendship. Whether your goal is to play in a band, or you just want to perform privately in your home, or you want to develop your skills as a music composer or arranger, MIDI can help.

How Does MIDI Work?

There are many different kinds of devices that use MIDI, from cell phones to digital music instruments to personal computers. The one thing all MIDI devices have in common is that they speak the “language” of MIDI. This language describes the process of playing music in much the same manner as sheet music: there are MIDI Messages that describe what notes are to be played and for how long, as well as the tempo, which instruments are to be played, and at what relative volumes.

MIDI is not audio.

MIDI is not audio. So if someone says MIDI sounds bad, they really don’t understand how MIDI works. Imagine if you took sheet music of a work by Beethoven and handed it to someone who can read music, but has never played the violin. Then you  put in their hands a very cheap violin. The music would probably sound bad. Now take that same piece of sheet music and hand it to the first chair of a symphony orchestra playing a Stradivarius and it will sound wonderful. So MIDI depends on the quality of playback device and also also how well the description of the music fits that player.

MIDI is flexible

The fact that MIDI is a descriptive language provides tremendous flexibility.Because MIDI data is only performance instructions and not a digital version of a sound recording, it is actually possible to change the performance, whether that means changing just one note played incorrectly, or changing all of them to perform the song in an entirely new key or at a different tempo, or on different instruments.

MIDI data can be transmitted between MIDI-compatible musical instruments, or stored in a Standard MIDI File for later playback. In either case, the resulting performance will depend on how the receiving device interprets the performance instructions, just as it would in the case of a human performer reading sheet music. The ability to fix, change, add, remove, speed up or slow down any part of a musical performance is exactly why MIDI is so valuable for creating, playing and learning about music.

The Three Parts of MIDI

The original Musical Instrument Digital Interface (MIDI) specification defined a physical connector and message format for connecting devices and controlling them in “real time”. A few years later Standard MIDI Files were developed as a storage format so performance information could be recalled at a later date. The three parts of MIDI are often just referred to as “MIDI “, even though they are distinctly different parts with different characteristics.

1. The MIDI Messages – the software protocol

The MIDI Messages specification (or “MIDI Protocol”) is the most important part of MIDI. The protocol is made up of  the MIDI messages that describe the music. There are note messages that tell the MIDI devices what note to play, there are velocity messages that tell the MIDI device how loud to play the note, there are messages to define how bright, long or short a note will be.There are Program Change messages that tell the MIDI device what instrument to play.So by studying and understanding MIDI messages you can learn how to completely describe a piece of music digitally. Look for information about MIDI messages in the “Control” section of Resources.

2. The physical transports for MIDI

Though originally intended just for use with the MIDI DIN transport as a means to connect two keyboards, MIDI messages are now used inside computers and cell phones to generate music, and transported over any number of professional and consumer interfaces (USB, Bluetooth, FireWire, etc.) to a wide variety of MIDI-equipped devices.

There are many different Cables & Connectors that are used to transport MIDI data between devices. Look for specific information in the “Connect” section of Resources.

MIDI is not slow

The “MIDI DIN” transport causes some confusion because it has specific characteristics which some people associate as characteristics of “MIDI” — forgetting that the MIDI-DIN characteristics go away when using MIDI over other transports (and inside a computer). With computers a High Speed Serial, USB or FireWire connection is more common. USB MIDI is significantly faster than 5 pin DIN. Each transport has its own performance characteristics that might make some difference in specific applications, but in general the transport is the least important part of MIDI, as long as it allows you to connect all the devices you want use!

3. The file formats for MIDI files

The final part of MIDI is made up of the Standard MIDI Files (and variants), which are used to distribute music playable on MIDI players of both the hardware and software variety. All popular computer platforms can play MIDI files (*.mid) and there are thousands of web sites offering files for sale or even for free. Anyone can make a MIDI file using commercial (or free) software that is readily available, and many people do. Whether or not you like a specific MIDI file can depend on how well it was created, and how accurately your synthesizer plays the file… not all synthesizers are the same, and unless yours is similar to that of the file composer, what you hear may not be at all what he or she intended. Look in the “Create”section of Resources for information about how to create and use different MIDI file formats.

Even More MIDI

Many people today see MIDI as a way to accomplish something, rather than as a protocol, cable, or file format. For example, many musicians will say they “use MIDI”, “compose in MIDI” or “create MIDI parts”, which means they are sequencing MIDI events for playback via a synthesizer, rather than recording the audio that the synthesizer creates.